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Abstract

We consider a serialized coin-tossing leader election algorithm that proceeds in rounds
until a winner is chosen, or all contestants are eliminated. The analysis allows for either
biased or fair coins. We find the exact distribution for the duration of any fixed contestant;
asymptotically, it turns out to be a geometric distribution. Rice’s method (an analytic
technique) shows that the moments of the duration contain oscillations, which we give
explicitly for the mean and variance. We also use convergence in the Wasserstein metric
space to show that the distribution of the total number of coin flips (among all participants),
suitably normalized, approaches a normal limiting random variable.
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1. Introduction

Leader election is a problem of commonplace use and numerous applications, from scenarios
to elect a winner of a contest, to security systems in the case of failure of the existing central
coordinator. In this paper we analyze a randomized leader election algorithm that operates by
flipping coins to select a winner, with the possibility of no winners at all, as happens sometimes,
e.g. in book awards.

At the start we have n contestants, of which ultimately one or none is declared the winner
after a fair competition. The contestants go through elimination rounds in which they flip a
(possibly biased) coin. Throughout, p ∈ (0, 1) denotes the probability that the coin lands as a
head, and q = 1−p denotes the probability that the coin lands as a tail. At the first round, those
who flip tails are eliminated from the competition, and those who flip heads stay to compete
in further rounds. This elimination process goes on until either one contestant is declared a
winner, or all contestants are eliminated.

The possibly winnerless algorithm is a variation of an algorithm discussed in [3] and [12],
the difference being when all the contestants flip tails in the possibly winnerless algorithms,
they get eliminated, whereas in [3] and [12] the contest is reset and starts afresh with all the
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contestants reentering the competition again. The variation where all contestants are eliminated
presents a realistic assumption. It sometimes happens in real-life competition that an award is
not given. For instance, in 1949 the Swedish Academy withheld the Nobel Prize in Literature,
when it got deadlocked over four remaining candidates. The two algorithms are related. In fact,
the possibly winnerless version provides a benchmark for the other algorithm. The duration of
contestants, the number of coin flips, the duration of the entire algorithm, etc. in the possibly
winnerless version are stochastically dominated by their counterparts in the other version, and,
hence, provide lower bounds for averages.

In the analysis of several variants of leader election algorithms, the typical parameter of
interest is the number of rounds till termination (see [3], [5], and [12]). More recent research has
branched out to consider other parameters and properties. For instance, in [7] and [8] a version of
leader election algorithms is considered, where a demon randomly eliminates some contestants,
and the algorithm stops, if all contestants flip tails and are declared winners (survivors) of the
competition. Another important parameter is the total number of coin flips; Prodinger [12]
found the exact average number of coin flips for a certain leader election algorithm that flips
unbiased coins. This parameter is relevant in the serialized version of this class of algorithms,
where only one coin is available and is passed from one contestant to the next.

We study the prospects of a contestant, as represented by the distribution of the number of
rounds he/she stays, and the speed of the serialized version of the algorithm, as represented by
the distribution of the total number of coin flips.

The paper is organized as follows. In Section 2 the exact and asymptotic distributions of
the duration of a contestant are derived, and the oscillatory behavior of the mean and variance
is given. In Section 3 we obtain the limiting distribution of the total number of flips using
convergence of distribution functions in the Wasserstein metric space.

2. Duration of a contestant

Let Dn,j be the number of rounds that the j th contestant survives when n participants are
present at the start. Since the contestants behave stochastically in the same way, Dn,j

d= Dn,1,
where ‘

d=’ denotes (exact) equality in distribution. So we shall develop results for Dn := Dn,1
and drop the second subscript to keep the notation simple. Equivalently, Dn is the duration of
a randomly selected contestant. For n = 0 or n = 1, no election is necessary, so we define
D0 = D1 = 0.

Theorem 1. The probability mass function for Dn is exactly

P(Dn = k) = pk−1(q − (1 − pk−1)n−1 + p(1 − pk)n−1),

for n ≥ 2 and k ≥ 1.

Proof. The duration of the first contestant is k in one of two ways: he/she either loses in k

rounds (event Lk), or wins in k rounds (event Wk). The event Lk occurs if he/she flips k − 1
heads followed by a tail in the kth flip, provided that at least one other contestant flips k − 1
heads (otherwise, the contest would have stopped sooner). Thus,

P(Lk) = pk−1q(1 − (1 − pk−1)n−1).

The event Wk occurs if the first contestant initially has k heads, provided that none of the other
contestants begins with k heads, but at least one of them begins with k − 1 heads (otherwise,
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the winning contestant would have won sooner). Thus,

P(Wk) = pk((1 − pk)n−1 − (1 − pk−1)n−1).

Whence, P(Dn = k) = P(Lk) + P(Wk), and the theorem follows.

In what follows, Geo(q) stands for a geometric random variable arising from the number
of independent, identically distributed trials until the first success, each having probability of

success q. The notation ‘
d−→’ will denote weak convergence (convergence in distribution), ‘

p−→’
will denote convergence in probability, and ‘

a.s.−→’ will denote convergence almost surely.

Corollary 1. As n → ∞,

Dn
d−→ Geo(q).

Indeed, not only does Dn converge in distribution to Geo(q), but each of the moments of
Dn converges to the analogous moment of a Geo(q) random variable. (We prove this only for
the mean; we sketch a proof for the variance. The same analytic methodology yields proofs for
higher moments of Dn, although for conciseness, we do not present such proofs here.) What
is interesting here is the asymptotic oscillations that ultimately disappear. We illustrate this
disappearance for the mean and variance.

Corollary 2. As n → ∞,

E[Dn] = 1

q
+

(
1

ln p

∞∑
k=−∞

�

(
1 − 2π ik

ln p

)
e−2π ik log1/p n

)
1

n
+ O

(
1

n2

)
,

var[Dn] = p

q2 −
(

2

(ln p)2

∞∑
k=−∞

�

(
1 − 2π ik

ln p

)
e−2π ik log1/p n

)
ln n

n
+ O

(
1

n

)
.

The error terms include small oscillations.

Proof. We use the exact form of the distribution of Dn in Theorem 1 as a starting point. This
yields the exact mean for n ≥ 2:

E[Dn] =
∞∑

k=0

k P(Dn = k) = 1

q
−

∞∑
k=0

kpk−1(1 − pk−1)n−1 +
∞∑

k=0

kpk(1 − pk)n−1.

After shifting the index of k in the first sum, we have E[Dn] = 1/q−∑∞
k=0 pk(1−pk)n−1. Using

the binomial expansion (1 − pk)n−1 = ∑n−1
j=0

(
n−1
j

)
(−1)jpkj , and simplifying the resulting

geometric sum, we conclude that

E[Dn] = 1

q
−

n−1∑
j=0

(
n − 1

j

)
(−1)j

1 − pj+1 .

The alternating sum in the mean can be handled by Rice’s integral method [4]. The fundamental
idea is to recognize that such an alternating sum is exactly the same as

− 1

2π i

∮
C1

β(n, −z)

1 − pz+1 dz,

where β(·, ·) is the beta function, and the line integral is taken over a closed contour C1
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surrounding the integers 0, 1, . . . , n − 1 and no other integers. For instance, C1 can be the
contour consisting of a rectangle connecting the four corners at − 1

2 ± i and n− 1
2 ± i. The link

is that the integrand has simple poles at the integer points 0, 1, . . . , n − 1, and their residues
coincide with the negative of the summands. The integral is then evaluated via the residues
of the poles outside C1 and a small error. This is done by deforming C1 into a larger contour
C2(a, M), say a rectangle connecting the four corners at −a±π(2M+1)i and n+b±π(2M+1)i
for a, b > 1 and a large positive integer M . The two integrals over C1 and C2(a, M) differ
by the residues of the poles enclaved between the two contours. Outside C1, there are simple
poles at zk = −1 + 2πki/ ln p for k = 0, ±1, ±2, . . .. Thus, as we let M → ∞, the rectangle
C2(a, M) grows to encompass all the poles outside C1, and

− 1

2π i

∮
C1

β(n, −z)

1 − pz+1 dz = − 1

2π i
lim

M→∞

∮
C2(a,M)

β(n, −z)

1 − pz+1 dz +
∞∑

k=−∞
Res
z=zk

β(n, −z)

1 − pz+1 .

By Stirling’s approximation to the gamma function, we have the residue calculation

Res
z=zk

β(n, −z)

1 − pz+1 = − �(n)�(−zk)

�(n − zk) ln p
= −n−1+2πki/ ln p

ln p
�

(
1 − 2πki

ln p

)(
1 + O

(
1

n

))
.

As M → ∞, the integral over the limiting contour limM→∞ C2(a, M) gives a correction error
of the order n−a . As we already took only one term in Stirling’s approximation, it does not
help to take a much greater than 1. Let us take a = 2 and obtain

E[Dn] = 1

q
+

(
1

ln p

∞∑
k=−∞

�

(
1 − 2π ik

ln p

)
e−2π ik log1/p n

)
1

n
+ O

(
1

n2

)
.

We can improve the overall error by taking more terms in Stirling’s approximation, and choosing
larger a.

The variance follows from similar developments, which we only sketch. The exact second
factorial moment is

E[Dn(Dn − 1)] =
∞∑

k=0

k(k − 1) P(Dn = k) = 2
n−1∑
j=1

(
n − 1

j

)
(−1)j+1pj+1

(1 − pj+1)2 .

We manipulate the formula for the exact probability to be in the form of an alternating sum,
which we then handle via Rice’s integral method. The result follows after a residue calculation.

3. Total number of coin flips

Let Xn be the total number of coin flips until the contest comes to a halt. Under serialized
conditions, Xn is a measure of the speed of the algorithm. Let Wn be the number of candidate
winners who move to the next round. The number Wn is a binomially distributed random
variable counting the number of successes in n independent, identically distributed trials with
rate of success p per trial. For n ≥ 2, we have

Xn
d= n + XWn; (1)

the initial conditions are X1 = X0 = 0. Note that

Xn = Dn,1 + Dn,2 + · · · + Dn,n. (2)
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The random durations are identically distributed but are dependent (in fact they are exchange-
able). This adds complexity to the study of the distribution of Xn. However, this does not
introduce an added difficulty for calculation of the mean:

E[Xn] =
n∑

j=1

E[Dn,j ] = n E[Dn] = n

q
+ 1

ln p

∞∑
k=−∞

�

(
1 − 2π ik

ln p

)
e−2π ik log1/p n + O

(
1

n

)
.

In view of the dependence, higher moments are harder to compute directly from recurrences
derived from (2). However, the form of (1) is amenable to convergence methods in metric
spaces, as simple limits can be guessed. The binomial distribution of Wn can be approximated
by a normal distribution with mean np and variance npq. (In what follows a normal random
variate with mean µ and variance σ 2 will be denoted by N (µ, σ 2).) This suggests that

√
n is

the right scale factor for limits to appear on the right-hand side. Centering and scaling (1), we
obtain

X∗
n := Xn − n/q√

n

d= XWn − Wn/q√
Wn

√
Wn

n
+ n − n/q + Wn/q√

n
. (3)

Thus, in normalized form we have the distributional equation

X∗
n

d= X∗
Wn

√
Wn

n
+ n − n/q + Wn/q√

n
.

Now, if X∗
n

d−→ X∗, so will X∗
Wn

because Wn
a.s.−→ ∞. Also,

√
Wn/n

p−→ √
p. It would then

follow from Slutsky’s theorem (see [6, p. 147]) that the combination X∗
Wn

√
Wn/n converges in

distribution to X∗√p. Furthermore, (n − n/q + Wn/q)/
√

n
d−→ Z

√
p/q, where Z

d= N (0, 1).
Hence, if X∗

n has a limit, we would expect it to satisfy the distributional equation

X∗ d= √
pX∗ +

√
p

q
Z.

(Technically, X∗ turns out to be the fixed point of the contraction given implicitly by the
distributional equation (3). The contraction method was introduced by Rösler [14] to analyze
the Quick Sort algorithm. A broad theory is developed in [10], and [15] provides a survey.)
To rigorously prove all this, it suffices to show that the second-order Wasserstein distance
d2(F

∗
n , F ∗) converges to 0, as n → ∞, where F ∗

n is the distribution function of X∗
n and F ∗ is

the distribution function of X∗. The Wasserstein distance of order 2 between two distribution
functions F ∗

n and F ∗ is defined by

d2(F
∗
n , F ∗) := inf

V ∗
n ,V ∗{‖W ∗

n − W‖2 : W ∗
n

d= V ∗
n , W

d= V ∗},

where V ∗
n is of distribution F ∗

n , V ∗ is of distribution F ∗, and ‖ · ‖2 is the L2 norm. Thanks
to recent advances in the contraction method, such as those in [9], we can prove in a fairly
mechanical way that X∗

n

d−→ X∗. Such convergence implies convergence in the first two
moments too [1, p. 254]. The next lemma characterizes the limit.

Lemma 1. Let Z be a standard normal random variable. If a random variable X∗ is indepen-
dent from Z and satisfies the distributional equation

X∗ d= √
pX∗ +

√
p

q
Z,

then X∗ has the distribution of N (0, p/q2).
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Proof. Let η∗
X(t) be the characteristic function of X∗. Both sides of the distributional

equation have the same characteristic function:

ηX∗(t) = ηX∗(p1/2t) exp

(
−pt2

2q

)

= ηX∗(p2/2t) exp

(
−pt2

2q
− p2t2

2q

)

= · · ·

= ηX∗(pk/2t) exp

(
−pt2

2q
(1 + p + p2 + · · · + pk−1)

)
.

Take the limit, as k → ∞. By dominated convergence, the function ηX∗(pk/2t) has the limit
ηX∗(0) = 1. Hence,

ηX∗(t) = exp

(
−pt2

2q2

)
,

and the right-hand side is the characteristic function of N (0, p/q2).

The convergence of X∗
n to a limit X∗ satisfying the distributional equation in Lemma 1 is

demonstrated in [9]; see Remark 1 below. This convergence, together with the characterization
in Lemma 1, establishes the following result.

Theorem 2. As n → ∞,
Xn − n/q√

n

d−→ N

(
0,

p

q2

)
.

Remark 1. This development is quite similar to the general result in Theorem 6.1 and Corol-
lary 6.2 of [9] which is an application to the size of a random skip list. The construction algorithm
of skip lists [2], [11], [13] is a bit different from the leader election algorithm presented in this
paper, but gives the same type of stochastic recurrence, only differing in initial conditions [9].
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